
Parallelization Techniques for Implementing Trellis
Algorithms on Graphics Processors

Q. Zheng∗, Y. Chen∗, R. Dreslinski∗, C. Chakrabarti†, A. Anastasopoulos∗, S. Mahlke∗ and T. Mudge∗
∗EECS Dept, University of Michigan, Ann Arbor
†School of ECEE, Arizona State University, Tempe

Abstract— In this paper, we study different schemes to paral-
lelize trellis algorithms for efficient implementation on a GPU.
We consider parallelization schemes at the packet-level, subblock-
level and trellis-level to increase the number of threads in a
GPU implementation. At the trellis-level, we consider state-level,
forward-backward traversal and branch-metric parallelism. To
evaluate the performance of the different schemes, an LTE uplink
Turbo decoder is implemented on an NVIDIA GTX470 GPU.
Tradeoffs between throughput, latency and bit error rate are
presented. Our most balanced configuration is simultaneously
processing multiple subblocks in a packet in conjunction with
recovery schemes and trellis-level parallelism, which can achieve
a throughput of 19.65 Mbps with a latency of 0.56 ms at bit
error rate of 10−5 for 1.3 dB channel SNR. We also show how
different combinations of parallelization schemes can be used to
satisfy systems with widely varying requirements of throughput,
latency and bit error rate.

I. INTRODUCTION

The trellis is a widely used graph in coding theory that
describes the progression of symbols within a code. There
are many popular trellis algorithms, including Viterbi algo-
rithm [1], Baum-Welch algorithm [2], BCJR algorithm [3], etc.
These algorithms are used in many systems, such as in speech
recognition, communication protocols and data compression.
In order to meet the timing deadlines of such systems, high
throughput implementations of trellis algorithms are required.
For example, the Viterbi algorithm that is used as the con-
volutional code in the WCMDA wireless protocol requires a
2Mbps decoding throughput in the downlink.

In this paper, we investigate the use of graphics proces-
sors (GPUs) for this application domain. They provide high
throughput with good programmability and are very attrac-
tive for their raw compute power per dollar. Unfortunately,
trellis algorithms do not map well onto these platforms due
to relatively high computational dependencies. In spite of
the imperfect match, there has been a growing interest in
exploring whether GPUs have a role in that domain. GPU
implementations have been proposed for trellis-based algo-
rithms, such as those used in Turbo decoding [4]–[6] and
Viterbi decoding [7]. In these papers, packet-level, subblock-
level and state-level parallelization schemes were implemented
to get high throughput. However, none of them considered
the processing latency, and the tradeoffs between throughput,
latency and bit error rate.

In this work, we study different parallelization techniques
such as those at the packet-level, subblock-level and trellis-
level. At the trellis-level, we consider state-level, forward-

backward traversal and branch-metric parallelism. While
trellis-level, subblock-level and packet-level parallelism all
improve the throughput, trellis-level parallelism does not affect
the latency or bit error rate. For the LTE uplink, we find
that use of subblock-level parallelism with 256 subblocks in
combination with state-level and forward-backward traversal at
the trellis-level, and recovery schemes such as next iteration
initialization and training sequences exceeds the LTE through-
put requirement of 16.67 Mbps for bit error rate of 10−5

when implemented on the NVIDIA GTX470 GPU. If multiple
packets are processed, our system can achieve a throughput of
29 Mbps that is comparable with [4] but with significantly
lower packet latency.

input=0
input=1

stage k-1 stage k

state 0

state 1

state 2

state 3

state 4

state 5

state 6

state 7

stage k+1

Fig. 1. Trellis structure of Turbo codes used in LTE

II. BACKGROUND

A. Trellis Algorithms

The trellis is a graph representation of the state transitions of
a finite state machine (FSM) for all possible input sequences.
Fig. 1 is a typical structure of a trellis. Each column is a unit of
time called a stage and each node represents a possible FSM
state at each stage. A branch between two states corresponds
to a possible state transition, depending on the input to the
FSM. In the forward direction, the forward metric of a state
sk at stage k is the maximum (over all possible transitions
from sk−1 to sk) of the sum of the forward metric of states
sk−1 and the branch metric corresponding to the transition
from sk−1 to sk. Similarly for the backward direction. After
computing the forward and backward state metrics, the metric
of each possible transition at stage k is evaluated as the sum
of the forward metric of the starting state sk−1, the branch
metric corresponding to the transition from sk−1 to sk and
the backward state metric of sk. Finally at each stage k, the
metric corresponding to each input bit is evaluated as the
maximum among all transition metrics corresponding to the
same input bit. In Fig. 1, for example, the metric for bit 0

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 1220



is the maximum metric of eight transition metrics represented
with dashed lines.

B. Performance Challenges on a GPU

A GPU is a programmable processor providing GFLOPS-
level throughput, which makes it a good platform for com-
putation intensive applications. However, it is a challenge
to implement an algorithm that makes full use of the GPU
resources. There are two main causes of underutilization:
pipeline stall and thread inadequacy. Pipeline stall occurs when
dispatch units fail to issue an instruction, mainly due to long
memory access. Thread inadequacy happens if the number of
thread blocks is smaller than that of streaming multiprocessors
(SMs), or the number of threads in each thread block is not
a multiple of thread context size, 32 for our case. To keep all
the cores of a GPU active, an adequate amount of workload
must be created. The parallelization schemes proposed here
help create such a workload.

The memory system consists of on-chip memory, off-chip
L2 cache and external memory. On-chip memory can be
configured as either 48KB/16KB or 16KB/48KB shared
memory/L1 cache. Shared memory is software managed, so
when shared memory usage per thread is fixed, more shared
memory leads to more threads and the GPU is better utilized.
However, this also leads to smaller L1 cache and thus longer
access time.

III. PARALLELIZATION SCHEMES

We consider three levels of parallelism: packet-level,
subblock-level and trellis-level for higher GPU utilization.

A. Packet-level Parallelism

A packet is a formatted unit of data in a computer or
communication network. In a GPU implementation, the input
packets can be stored in a buffer so that they can be processed
in parallel. The disadvantage of packet-level parallelism is
that it results in long latency especially for the first packet
in the buffer. This impairs the quality of service of time-
constrained applications. The number of threads in a packet-
level parallelism scheme is proportional to the number of
packets that are processed in parallel.

B. Subblock-level Parallelism

A packet can be divided into several subblocks, which are
processed in parallel. While this increases the number of
threads, it leads to higher bit and packet error rates since
the computations in each of the subblocks are not really
independent from each other. Specifically, the computation of
the ith subblock depends on the computations in the last stage
of the (i − 1)th subblock. Thus, if subblocks are processed
in parallel, the initial values of latter subblocks are incorrect
resulting in higher output error rate. One way to compensate
for this performance loss is by employing recovery algorithms,
e.g., training sequence (TS) and next iteration initialization
(NII) [6].

In the TS algorithm, additional computations are done on
the (i−1)th subblock to generate the dummy initial values of

the ith subblock. The longer the training sequence, the larger
is the number of additional computations and lower is the bit
error rate (BER).

In the NII algorithm, the outputs of the (i− 1)th subblock
in the previous iteration are used as the initial values of
the ith subblock in the current iteration. The idea behind
NII is that the results of each iteration converge closer to
the correct values than those of previous iterations. From an
implementation perspective, TS requires additional operations,
and NII needs additional memory.

C. Trellis-level Parallelism

There are three types of trellis-level parallelism. The first is
state-level parallelism, in which the nodes in a stage is pro-
cessed in parallel. There are no computational dependencies
among the nodes in a stage and the processing of a node only
depends on the nodes that are connected to it in the adjacent
stages. State-level parallelism does not affect BER, and the
number of threads due to state-level parallelism is proportional
to the number of states in a stage.

TABLE I
SUMMARY OF PARALLELIZATION SCHEMES

Scheme Throughput Latency Bit Error Rate
Packet-level Better Worse No Change

Subblock-level Better No Change Worse
Trellis-level Better No Change No Change

Subblock+NII Worse No Change Better
Subblock+TS Worse No Change Better

The second type of parallelism is forward-backward traver-
sal where the values are propagated in both forward and
backward directions, and the propagations are independent.
Forward-backward traversal (FB) results in more complex
index and memory address computations, because two propa-
gations must be separated during the calculation. Therefore,
more instructions are executed to support FB parallelism,
thereby lowering the throughput.

The third type of parallelism is branch-metric parallelism
(BM), where the branches from a node in stage k to others
in stage k + 1 are processed in parallel. This is not as ef-
fective since the vector reduction parts cannot be parallelized.
However for higher radix trellis that is obtained by combining
multiple stages together, more threads can be generated from
BM. Also less memory is used in this case. Overall, two
threads are created in FB and the number of threads created
by BM is equal to the radix degree.

Table I summarizes the parallelization schemes. From this
table, we see that trellis-level parallelism improves through-
put without impairing latency and BER. Packet-level and
subblock-level parallelism improve throughput at the cost of
either longer latency or higher BER. Both recovery schemes
degrade the throughput but improve BER performance com-
pared to only subblock-level parallelism.

IV. RESULTS

A. Experimental Framework

We implemented a representative trellis algorithm, the BCJR
algorithm [3], on the NVIDIA GTX470 GPU to evaluate

1221



the performance of the different parallelization schemes. The
GTX470 is based on Fermi architecture [8]. It can support at
most 448 threads running at a time. It has a 64KB on-chip
memory, a 768KB L2 cache and 1280MB external memory.
We chose the BCJR algorithm as a case study since it is
used in the Turbo code in LTE. The corresponding trellis
structure has 8 states in a stage and is the same as shown
in Fig. 1; however, the values propagate through the trellis in
both directions. The LTE Turbo code configuration is used in
our simulations: the packet size is 6144 bits and the code rate
is 1/3 [9]. The baseline implementation is a sequential one
(without any parallelization) with 0.0178 Mbps throughput and
345ms packet latency.

B. Experimental Results

We implemented two GPU memory configurations
(48KB/16KB and 16KB/48KB shared memory/L1 cache)
with state-level, subblock-level and packet-level parallelism.
We varied the number of subblocks from 1 to 512, and the
number of packets from 1 to 84. We found that a larger
L1 cache results in better timing performance. For instance,
for the configuration with small input size (1 packet) and
64 subblocks, the larger L1 cache configuration achieves
30.8% higher throughput compared with smaller L1 cache
configuration. So, we used the 48K L1 cache configuration
in the rest of the experiments.

First, we studied the performance of different trellis-level
parallelism schemes for different packet latencies. We use
packet buffering latency as a metric to represent packet-level
parallelism since it is a function of the number of packets
being processed in parallel. Fig. 2 shows the performance of
the different schemes when the subblock size is the same
as the packet size. As the number of packets increases, the
throughput increases. However, the throughput gains slow
down when the number of packets is quite large. This is
because the GPU is fully loaded and having more threads is
not beneficial any more. The throughput improves quite a bit
when state-level parallelism is combined with either FB or BM
parallelism. Compared with the baseline scheme, state-level,
state-level+FB and state-level+BM achieve a speedup of 5.1x,
7.4x and 5.8x, respectively. All schemes achieve a BER of
10−5 when SNR is 1.0 dB.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

Worst−case packet buffering latency(ms)

Th
ro

ug
hp

ut
(M

bp
s)

 

 

state−level
state−level + FB
state−level + BM

Fig. 2. Throughputs and latencies of different trellis-level parallelization
schemes when the packet size is the same as the subblock size and multiple
packets are processed in parallel.

Next, we fixed the latency by considering only one packet
and studied the effect of different numbers of subblocks and
recovery schemes such as TS and NII. Fig. 3 and Fig. 4
show the throughput and SNR requirement for the different
schemes. The length of a packet is 6144 bits, which equals the
product of the subblock length and the number of subblocks.
The SNR requirement presented here is the lowest value to
achieve the given bit error rate of 10−5. The SNR requirement
of the baseline scheme is 0.9 dB. From this figure, we
derive the following conclusions. 1) Increasing the number of
subblocks provides higher throughput due to more parallelism,
but has higher SNR requirement due to wrong initial values
and shorter subblocks. 2) Longer training sequences have
lower SNR requirement but lower throughput due to additional
calculations. The SNR requirement saturates when the training
sequence is long. For instance, TS-12 has almost the same
SNR requirement as TS-full in which the training sequence is
as long as a subblock. Additional computational overhead due
to recovery schemes does not affect the throughput as much
because of the high computational power provided by GPU.
3) Among the recovery schemes, the combination of NII and
TS is the best. The scheme NII+TS-4 has nearly the lowest
SNR requirement with a throughput of 4.26 Mbps when 512
subblocks are used per packet. Its throughput is comparable
with that of NII or TS-4, but it has a lower SNR requirement.

4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of subblocks in power of 2

Th
ro

ug
hp

ut
(M

bp
s)

 

 
NII
TS−0
TS−4
TS−12
TS−full
NII+TS−4
NII+TS−full

Fig. 3. Throughputs of schemes with different number of subblocks (per
packet) and recovery schemes for bit error rate of 10−5.

We also study the effect of increasing the radix of the trellis
algorithm. Radix-4, which is derived by combining two stages
into one, helps to double threads from BM compared with
radix-2, and reduces the required memory because there is
only half the number of stages. However, since twice the
number of threads are generated, the amount of work each
thread undertakes is still the same and the total amount of work
done in a radix-4 implementation is two times that of radix-
2. So, radix-4 is useful only when GPU is not fully loaded
and the benefits from compactness outperform the overhead
of redundancy. Our experiment shows that radix-4 outperforms
radix-2 when the packet number ≤ 4.

C. Implementation Tradeoff
Different systems have different requirements for through-

put, latency and BER. For instance, real-time gaming requires

1222



4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

Number of subblocks in power of 2

SN
R

(d
B)

 

 
NII
TS−0
TS−4
TS−12
TS−full
NII+TS−4
NII+TS−full

Fig. 4. SNR requirement of schemes with different number of subblocks
(per packet) and recovery schemes for bit error rate of 10−5.

low latency but medium throughput and BER; TCP-based
service requires both low BER and high throughput but can
tolerate long latency. In our study, we combined different
schemes to determine which combinations of parallelism were
suitable for which applications. First, we found that subblock
parallelism with a combination of NII and short TS (NII+TS-
4) achieves the best tradeoff between bit error rate and
throughput. Next, we implemented NII+TS-4 with packet-level
and trellis-level parallelization schemes to meet the 16.67Mbps
LTE uplink throughput. Table II shows the throughput, latency,
SNR requirement and BER of the different schemes. Note that
trellis-level parallelism improves the throughput significantly
and should be used at all times (row 2). If SNR requirement
is low, subblock-level parallelism has to be used with caution
and trellis-level and packet-level parallelisms are better options
(rows 3 and 4). If the system has a rigid latency constraint,
trellis-level or subblock-level parallelisms should be used to
achieve high throughput with low latency (rows 2 and 4).

Table III compares the performance of our scheme with
other LTE Turbo decoder implementations on a GPU. For a
fair comparison, we scaled the throughputs in [5] and [6]
by the processor frequency and the number of processors
in the GPU. Our scheme achieves the best throughput with
good BER. While [4] has comparable throughput, it requires
processing 50 packets to achieve 27.5 Mbps. In comparison,
our scheme needs to process 10 packets to achieve 29.0 Mbps
throughput, resulting in significant reduction in the worst-case

TABLE II
IMPLEMENTATION TRADEOFF

Schemes TH* WPL* SNR*
BER*

TL+ Subblock
Num

Packet
Num (Mbps) (ms) (dB)

- 512 1 4.26 1.44 1.7 1.6×10−3

SL+ 512 1 20.49 0.55 1.7 1.6×10−3

SL 256 2 21.09 1.07 1.3 4.1×10−4

SL,FB+ 256 1 19.65 0.56 1.3 4.1×10−4

SL,FB 128 10 29.00 4.58 1.1 2.0×10−4

* TH = Throughput, WPL = Worst-case Packet Latency, SNR = Signal-to-
Noise Ratio requirement, which is the lowest value to achieve BER of
10−5, BER = Bit Error Rate when SNR = 1.0 dB

+ TL = Trellis-level parallelism, SL = State-level parallelism, FB = Forward-
Backward traversal

packet latency.
TABLE III

PERFORMANCE COMPARISON

Work GPU
Original

Throughput
(Mbps)

Scaled
Throughput

(Mbps)
BER*

[5] Tesla C1060 2.1 3.77 1.0×10−2

[6] GeForce 9800 2.4 3.50 1.0×10−4

[4] GTX 470 27.5 27.5 Not known

Ours GTX 470 29.0 29.0 2.0×10−4

* BER here is the bit error rate when SNR = 1.0 dB

V. CONCLUSION

We implemented different schemes to parallelize trel-
lis algorithms for GPU implementations. These include
packet-level, subblock-level and trellis-level parallelism. These
schemes are general and can be used in other parallel com-
puting platforms. We considered the effect of on-chip memory
configuration of the GPU and found that a larger L1 cache
shows better throughput performance compared to one with a
smaller L1 cache but a larger shared memory. When multiple
subblocks (256) are processed in parallel, the combination
of NII and TS algorithms with a 4-bit training sequence has
the best performance in terms of throughput and BER. How-
ever, to achieve the LTE uplink throughput, a configuration
with trellis-level parallelism in combination with subblock-
level parallelism can achieve a throughput of 19.65 Mbps
with latency of 0.56 ms at BER of 10−5. We also show
how different combinations of parallelization schemes can be
used to satisfy systems with widely varying requirements of
throughput, latency and bit error rate.

VI. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their useful com-
ments and suggestions. We also thank ARM Ltd, who sup-
ported this work.

REFERENCES

[1] G. D. Forney, Jr., “The Viterbi Algorithm,” in Proc. of IEEE, vol. 61,
Mar. 1973, pp. 268–278.

[2] L. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov
Chains,” The Annals of Mathematical Statistics, vol. 41, pp. 164–171, Feb.
1970.

[3] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Trans. Intell. Transport.
Syst., vol. 20, pp. 284–287, Mar. 1974.

[4] M. Wu, Y. Sun, G.Wang, and J. Cavallaro, “Implementation of a High
Throughput 3GPP Turbo Decoder on GPU,” Journal of Signal Processing
Systems, vol. 65, pp. 171–183, 2011.

[5] D. Lee, M. Wolf, and H. Kim, “Design space exploration of the Turbo
decoding algorithm on GPUs,” in CASES’10, 2010, pp. 217–226.

[6] D. Yoge and N. Chandrachoodan, “GPU Implementation of a Pro-
grammable Turbo Decoder for Software Defined Radio Applications,” in
25th International Conference on VLSI Design, Jan. 2012, pp. 149–154.

[7] D. Zhang, R. Zhao, L. Han, T. Wang, and J. Qu, “An Implementation of
Viterbi Algorithm on GPU,” in International Conference on Information
Science and Engineering, Dec. 2009, pp. 121–124.

[8] “Next Generation CUDA Compute Architecture: Fermi,” White Paper,
NVIDIA, 2009.

[9] Technical Specification: 3GPP TS 36.212.

1223


